40 research outputs found

    Exploring the Design Space of Extra-Linguistic Expression for Robots

    Full text link
    In this paper, we explore the new design space of extra-linguistic cues inspired by graphical tropes used in graphic novels and animation to enhance the expressiveness of social robots. To achieve this, we identified a set of cues that can be used to generate expressions, including smoke/steam/fog, water droplets, and bubbles. We prototyped devices that can generate these fluid expressions for a robot and conducted design sessions where eight designers explored the use and utility of the cues in conveying the robot's internal states in various design scenarios. Our analysis of the 22 designs, the associated design justifications, and the interviews with designers revealed patterns in how each cue was used, how they were combined with nonverbal cues, and where the participants drew their inspiration from. These findings informed the design of an integrated module called EmoPack, which can be used to augment the expressive capabilities of any robot platform

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Post-collision impacts, crippling bias, and environmental bias in a study of Newell's Shearwater and Hawaiian Petrel powerline collisions

    No full text
    Powerline collisions have been identified on Kaua'i as a potential contributing factor to the large-scale decline of both Hawaiian Petrel (Pterodroma sandwichensis) and Newell's Shearwater (Puffinus newelli), but the scale of the powerline collision problem is unknown. From 2012 to 2020 we conducted observations for seabird powerline collisions across Kaua'i, documented grounded seabirds, and assessed crippling and environmental biases - both poorly studied facets of powerline collision research. We directly observed 121 powerline collisions and detected 89 grounded seabirds. While some collisions resulted in birds falling lifelessly out of the sky, most resulted in seabirds flying or gliding outside of the search area. This means that traditional ground searches would underestimate total collisions by 78-88% if not accounting for crippling bias. We tested environmental bias by comparing our ability to conduct searches for grounded birds, "searchability", across multiple variables. Environmental bias resulted in significant reductions in searchability across regions, environment types, and powerline heights. Furthermore, observed collision rates were significantly higher at powerlines that had very low to zero searchability. Forty-three percent of observed collisions occurred at unsearchable powerlines (mainly spanning steep valleys), equating to an estimated 3170 seabird collisions that could not be detected through ground searches. We detected powerline collisions in every region of Kaua'i, in every environment type, and at all powerline heights monitored. Our results show that crippling bias and environmental bias are the mechanisms that concealed the geographic distribution of collisions and the scale of the powerline problem from grounded bird searches, ultimately preventing the detection of thousands of collisions. The data collected for this study are critical for assessing the scale of seabird powerline collisions and quantifying the biases inherent in traditional ground searches
    corecore